Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# (S)-1-Methoxycarbonyl-2-(4-nitrophenyl)ethanaminium chloride

#### Xiao-Chun Wen

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: fudavid88@yahoo.com.cn

Received 2 July 2008; accepted 6 July 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.049; wR factor = 0.112; data-to-parameter ratio = 17.9.

The title compound,  $C_{10}H_{13}N_2O_4^+ \cdot Cl^-$ , comprises a  $Cl^-$  anion and a protonated aminium cation. The crystal packing is stabilized by cation-anion N-H···Cl hydrogen bonds and N-H···O hydrogen bonds, building an infinite two-dimensional network parallel to the (001) plane. The S absolute configuration at the chiral center was deduced from the synthetic pathway and confirmed by the X-ray analysis.

#### **Related literature**

For details of  $\alpha$ -amino acid derivatives as precursors for the synthesis of novel biologically active compounds, see: Lucchese et al. (2007); Arki et al. (2004); Hauck et al. (2006); Dai et al. (2008); Azim et al. (2006).



## **Experimental**

Crystal data

| $C_{10}H_{13}N_2O_4^+ \cdot Cl^-$ |
|-----------------------------------|
| $M_r = 260.67$                    |
| Monoclinic, P21                   |
| a = 4.825 (3) Å                   |
| b = 8.426 (3) Å                   |
| c = 15.111 (9) Å                  |
| $\beta = 95.64 \ (4)^{\circ}$     |

V = 611.4 (6) Å<sup>3</sup> Z = 2Mo  $K\alpha$  radiation  $\mu = 0.32 \text{ mm}^-$ T = 298 (2) K  $0.25 \times 0.18 \times 0.17 \text{ mm}$ 

#### Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)  $T_{\min} = 0.931, T_{\max} = 0.942$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.048$ | H-atom parameters constrained                             |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.112$               | $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$ |
| S = 1.03                        | $\Delta \rho_{\min} = -0.17 \text{ e } \text{\AA}^{-3}$   |
| 2751 reflections                | Absolute structure: Flack (1983),                         |
| 154 parameters                  | 1259 Friedel pairs                                        |
| 1 restraint                     | Flack parameter: $-0.03$ (9)                              |
|                                 |                                                           |

6215 measured reflections

 $R_{\rm int} = 0.038$ 

2751 independent reflections

2077 reflections with  $I > 2\sigma(I)$ 

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                            | D-H                          | $H \cdot \cdot \cdot A$      | $D \cdots A$                                     | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------------------------------------------------------------|------------------------------|------------------------------|--------------------------------------------------|--------------------------------------|
| $N2-H11B\cdots O4^{i}$ $N2-H11B\cdots C11^{i}$ $N2-H11C\cdots C11^{ii}$ $N2-H11C\cdots C11$ | 0.89<br>0.89<br>0.89<br>0.89 | 2.31<br>2.71<br>2.42<br>2.34 | 2.929 (4)<br>3.380 (3)<br>3.175 (3)<br>3.151 (3) | 127<br>133<br>143<br>151             |
|                                                                                             |                              |                              |                                                  |                                      |

Symmetry codes: (i) -x + 1,  $y - \frac{1}{2}$ , -z + 1; (ii) x - 1, y, z.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2364).

#### References

- Arki, A., Tourwe, D., Solymar, M., Fueloep, F., Armstrong, D. W. & Peter, A. (2004). Chromatographia, 60, S43-S54.
- Azim, A., Shah, V. & Doncel, G.-F. (2006). Bioconjugate Chem. 17, 1523-1529. Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, 0974.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hauck, T., Sunkel, K. & Beck, W. (2006). Z. Anorg. Allg. Chem. 632, 2305-2309
- Lucchese, G., Stufano, A. & Trost, B. (2007). Amino Acids, 33, 703-707.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o1460 [ doi:10.1107/S1600536808020874 ]

## (S)-1-Methoxycarbonyl-2-(4-nitrophenyl)ethanaminium chloride

#### X.-C. Wen

#### Comment

 $\alpha$ -Amino acid derivatives are important molecules due to their pharmacological properties. Recently, there has been an increased interest in the enantiomeric preparation of  $\alpha$ -amino acid derivatives as precursors for the synthesis of novel biologically active compounds (Lucchese *et al.*, (2007); Arki *et al.*, (2004); Hauck *et al.*, (2006); Azim *et al.*, (2006); Dai *et al.*, (2008)). Here we report the crystal structure of the title compound.

The title compound is built up from a Cl<sup>-</sup> anion and a protonated amino group cation (Fig. 1). The nitro group and the benzene ring are nearly planar, they are only twisted to each other by a torsion angles of C2-C1-N1-O1 (2.1 (7)°) and C6-C1-N1-O2 (4.4 (7)°), and the methyl 2-aminopropanoate substituent group is a zig-zag chain.

The crystal packing is stabilized by cation-anion N—H···Cl H-bonds and N—H···O H-bonds building an infinite two-dimensional network developping parallel to the (0 0 1) plane.(Table 1, Fig. 2).

The S absolute configuration at C8 is deduced from the synthetic pathway and confirmed by the X-ray analyses.

#### Experimental

Under nitrogen protection, 2-amino-3-phenylpropanoic acid (30 mmol), nitric acid (50 mmol) and sulfuric acid (20 mmol) were added in a flask. The mixture was stirred at 110 °C for 3 h. The resulting solution was poured into ice water (100 mL), then filtered and washed with distilled water. The nitration amino acid was esterified with  $H_2SO_4$  and  $CH_3OH$  at 110 °C for 12 h, the crude product was obtained by evaporated the solution, and then recrystallized with distilled water by adding 1 ml HCl to yield colorless block-like crystals, suitable for X-ray analysis.

#### Refinement

All H atoms attached to C atoms and N atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine), 0.93 Å (aromatic) and N—H = 0.89 Å with  $U_{iso}(H) = 1.2U_{eq}(C \text{ except methyl})$  or  $U_{iso}(H) = 1.5U_{eq}(N \text{ and methyl } C)$ .

**Figures** 



Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.



Fig. 2. The crystal packing of the title compound viewed along the *b* axis and all hydrogen atoms not involved in hydrogen bonding (dashed lines) were omitted for clarity.

#### (S)-1-Methoxycarbonyl-2-(4-nitrophenyl)ethanaminium chloride

Crystal data

| $C_{10}H_{13}N_2O_4^+ \cdot Cl^-$   | $F_{000} = 272$                                 |
|-------------------------------------|-------------------------------------------------|
| $M_r = 260.67$                      | $D_{\rm x} = 1.416 {\rm ~Mg~m}^{-3}$            |
| Monoclinic, <i>P</i> 2 <sub>1</sub> | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| Hall symbol: P 2yb                  | Cell parameters from 1445 reflections           |
| a = 4.825 (3)  Å                    | $\theta = 2.4 - 27.5^{\circ}$                   |
| b = 8.426 (3)  Å                    | $\mu = 0.32 \text{ mm}^{-1}$                    |
| c = 15.111 (9)  Å                   | T = 298 (2)  K                                  |
| $\beta = 95.64 \ (4)^{\circ}$       | Block, colourless                               |
| $V = 611.4 (6) \text{ Å}^3$         | $0.25\times0.18\times0.17~mm$                   |
| Z = 2                               |                                                 |

#### Data collection

| Rigaku Mercury2<br>diffractometer                                 | 2751 independent reflections           |
|-------------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                          | 2077 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                           | $R_{\rm int} = 0.038$                  |
| Detector resolution: 13.6612 pixels mm <sup>-1</sup>              | $\theta_{\text{max}} = 27.4^{\circ}$   |
| T = 298(2)  K                                                     | $\theta_{\min} = 2.7^{\circ}$          |
| ω scans                                                           | $h = -6 \rightarrow 6$                 |
| Absorption correction: multi-scan<br>(CrystalClear; Rigaku, 2005) | $k = -10 \rightarrow 10$               |
| $T_{\min} = 0.931, T_{\max} = 0.942$                              | $l = -19 \rightarrow 19$               |
| 6215 measured reflections                                         |                                        |

#### Refinement

| Refinement on $F^2$             |
|---------------------------------|
| Least-squares matrix: full      |
| $R[F^2 > 2\sigma(F^2)] = 0.048$ |

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0476P)^2 + 0.0855P]$ where  $P = (F_o^2 + 2F_c^2)/3$ 

| $wR(F^2) = 0.112$                                              | $(\Delta/\sigma)_{max} < 0.001$                        |
|----------------------------------------------------------------|--------------------------------------------------------|
| <i>S</i> = 1.03                                                | $\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$    |
| 2751 reflections                                               | $\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$ |
| 154 parameters                                                 | Extinction correction: none                            |
| 1 restraint                                                    | Absolute structure: Flack (1983), 1259 Friedel pairs   |
| Primary atom site location: structure-invariant direct methods | Flack parameter: -0.03 (9)                             |

Secondary atom site location: difference Fourier map

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|--------------|--------------|---------------------------|
| Cl1  | 0.98552 (15) | 0.75535 (11) | 0.54873 (5)  | 0.0499 (2)                |
| O3   | 0.8079 (4)   | 0.7690 (3)   | 0.30131 (12) | 0.0483 (5)                |
| C9   | 0.6109 (5)   | 0.7495 (4)   | 0.35535 (16) | 0.0362 (6)                |
| O4   | 0.4684 (5)   | 0.8525 (3)   | 0.38126 (14) | 0.0498 (6)                |
| C8   | 0.5762 (6)   | 0.5766 (3)   | 0.37686 (18) | 0.0353 (6)                |
| H8A  | 0.7584       | 0.5243       | 0.3803       | 0.042*                    |
| N2   | 0.4629 (6)   | 0.5646 (3)   | 0.46458 (15) | 0.0448 (6)                |
| H11A | 0.5788       | 0.6120       | 0.5058       | 0.067*                    |
| H11B | 0.4447       | 0.4629       | 0.4787       | 0.067*                    |
| H11C | 0.2973       | 0.6119       | 0.4617       | 0.067*                    |
| C4   | 0.4967 (6)   | 0.4821 (4)   | 0.21766 (19) | 0.0400 (7)                |
| C7   | 0.3780 (7)   | 0.4943 (4)   | 0.3058 (2)   | 0.0439 (7)                |
| H7A  | 0.3369       | 0.3885       | 0.3262       | 0.053*                    |
| H7B  | 0.2044       | 0.5530       | 0.2980       | 0.053*                    |
| C1   | 0.7171 (8)   | 0.4557 (4)   | 0.0577 (2)   | 0.0493 (8)                |
| C2   | 0.8081 (8)   | 0.3560 (5)   | 0.1245 (2)   | 0.0576 (9)                |
| H2C  | 0.9440       | 0.2805       | 0.1165       | 0.069*                    |
| C3   | 0.6962 (7)   | 0.3682 (4)   | 0.2046 (2)   | 0.0512 (8)                |
| H3A  | 0.7551       | 0.2991       | 0.2506       | 0.061*                    |
| C5   | 0.4107 (7)   | 0.5812 (4)   | 0.1485 (2)   | 0.0530 (9)                |
| H5A  | 0.2761       | 0.6576       | 0.1561       | 0.064*                    |
| C6   | 0.5198 (8)   | 0.5697 (5)   | 0.0674 (2)   | 0.0612 (10)               |
| H6A  | 0.4609       | 0.6375       | 0.0207       | 0.073*                    |
| N1   | 0.8330 (9)   | 0.4439 (5)   | -0.0288 (2)  | 0.0722 (10)               |

# supplementary materials

| 01   | 1.0166 (8)  | 0.3463 (5) | -0.0366 (2) | 0.1027 (12) |
|------|-------------|------------|-------------|-------------|
| O2   | 0.7365 (9)  | 0.5296 (5) | -0.0890 (2) | 0.1057 (12) |
| C10  | 0.8487 (10) | 0.9318 (4) | 0.2717 (3)  | 0.0691 (11) |
| H10A | 0.9951      | 0.9340     | 0.2331      | 0.104*      |
| H10B | 0.8984      | 0.9983     | 0.3224      | 0.104*      |
| H10C | 0.6794      | 0.9702     | 0.2402      | 0.104*      |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| Cl1 | 0.0520 (4)  | 0.0476 (4)  | 0.0505 (4)  | 0.0037 (4)   | 0.0075 (3)  | -0.0092 (4)  |
| O3  | 0.0588 (12) | 0.0420 (12) | 0.0475 (11) | -0.0084 (12) | 0.0217 (10) | 0.0009 (12)  |
| C9  | 0.0410 (14) | 0.0359 (14) | 0.0315 (12) | -0.0017 (16) | 0.0027 (11) | -0.0029 (15) |
| 04  | 0.0582 (14) | 0.0403 (12) | 0.0521 (13) | 0.0093 (11)  | 0.0123 (11) | 0.0021 (11)  |
| C8  | 0.0429 (16) | 0.0342 (15) | 0.0303 (14) | 0.0008 (13)  | 0.0109 (12) | 0.0018 (12)  |
| N2  | 0.0599 (17) | 0.0372 (14) | 0.0390 (14) | -0.0001 (13) | 0.0135 (12) | 0.0005 (12)  |
| C4  | 0.0466 (17) | 0.0353 (15) | 0.0389 (16) | -0.0111 (13) | 0.0074 (14) | -0.0071 (13) |
| C7  | 0.0428 (17) | 0.0444 (18) | 0.0460 (17) | -0.0076 (14) | 0.0114 (14) | -0.0031 (15) |
| C1  | 0.058 (2)   | 0.056 (2)   | 0.0364 (17) | -0.0125 (17) | 0.0129 (15) | -0.0138 (15) |
| C2  | 0.060 (2)   | 0.062 (2)   | 0.052 (2)   | 0.0040 (19)  | 0.0099 (17) | -0.0160 (19) |
| C3  | 0.067 (2)   | 0.0434 (18) | 0.0431 (18) | -0.0007 (17) | 0.0073 (16) | -0.0024 (15) |
| C5  | 0.060 (2)   | 0.053 (2)   | 0.0465 (19) | 0.0070 (17)  | 0.0083 (16) | 0.0000 (17)  |
| C6  | 0.078 (3)   | 0.064 (2)   | 0.0403 (19) | -0.006 (2)   | 0.0023 (18) | 0.0038 (18)  |
| N1  | 0.085 (3)   | 0.089 (3)   | 0.0451 (19) | -0.023 (2)   | 0.0180 (17) | -0.021 (2)   |
| 01  | 0.094 (2)   | 0.141 (3)   | 0.078 (2)   | 0.008 (2)    | 0.0345 (19) | -0.035 (2)   |
| 02  | 0.155 (3)   | 0.121 (3)   | 0.0465 (16) | -0.005 (3)   | 0.0353 (19) | 0.0011 (19)  |
| C10 | 0.090 (3)   | 0.052 (2)   | 0.068 (2)   | -0.011 (2)   | 0.022 (2)   | 0.013 (2)    |

# Geometric parameters (Å, °)

| O3—C9     | 1.323 (3) | C1—C2    | 1.353 (5) |
|-----------|-----------|----------|-----------|
| O3—C10    | 1.462 (4) | C1—C6    | 1.371 (5) |
| С9—О4     | 1.196 (4) | C1—N1    | 1.475 (4) |
| С9—С8     | 1.506 (4) | C2—C3    | 1.377 (4) |
| C8—N2     | 1.486 (3) | C2—H2C   | 0.9300    |
| C8—C7     | 1.532 (4) | С3—НЗА   | 0.9300    |
| C8—H8A    | 0.9800    | C5—C6    | 1.384 (5) |
| N2—H11A   | 0.8900    | С5—Н5А   | 0.9300    |
| N2—H11B   | 0.8900    | С6—Н6А   | 0.9300    |
| N2—H11C   | 0.8900    | N1—O2    | 1.217 (5) |
| C4—C5     | 1.370 (4) | N1—O1    | 1.223 (5) |
| C4—C3     | 1.387 (5) | C10—H10A | 0.9600    |
| C4—C7     | 1.505 (4) | C10—H10B | 0.9600    |
| C7—H7A    | 0.9700    | C10—H10C | 0.9600    |
| С7—Н7В    | 0.9700    |          |           |
| C9—O3—C10 | 115.6 (3) | C2—C1—C6 | 122.2 (3) |
| O4—C9—O3  | 125.7 (3) | C2—C1—N1 | 119.8 (4) |
| O4—C9—C8  | 123.5 (3) | C6—C1—N1 | 118.0 (4) |

| O3—C9—C8     | 110.8 (3)  | C1—C2—C3      | 118.9 (3)  |
|--------------|------------|---------------|------------|
| N2—C8—C9     | 108.4 (2)  | C1—C2—H2C     | 120.6      |
| N2—C8—C7     | 109.6 (2)  | C3—C2—H2C     | 120.6      |
| C9—C8—C7     | 111.2 (2)  | C2—C3—C4      | 121.0 (3)  |
| N2—C8—H8A    | 109.2      | С2—С3—НЗА     | 119.5      |
| С9—С8—Н8А    | 109.2      | С4—С3—НЗА     | 119.5      |
| С7—С8—Н8А    | 109.2      | C4—C5—C6      | 121.4 (3)  |
| C8—N2—H11A   | 109.5      | C4—C5—H5A     | 119.3      |
| C8—N2—H11B   | 109.5      | С6—С5—Н5А     | 119.3      |
| H11A—N2—H11B | 109.5      | C1—C6—C5      | 118.2 (3)  |
| C8—N2—H11C   | 109.5      | C1—C6—H6A     | 120.9      |
| H11A—N2—H11C | 109.5      | С5—С6—Н6А     | 120.9      |
| H11B—N2—H11C | 109.5      | O2—N1—O1      | 123.7 (4)  |
| C5—C4—C3     | 118.4 (3)  | O2—N1—C1      | 118.1 (4)  |
| C5—C4—C7     | 121.4 (3)  | O1—N1—C1      | 118.2 (4)  |
| C3—C4—C7     | 120.2 (3)  | O3—C10—H10A   | 109.5      |
| C4—C7—C8     | 112.7 (3)  | O3—C10—H10B   | 109.5      |
| С4—С7—Н7А    | 109.1      | H10A—C10—H10B | 109.5      |
| С8—С7—Н7А    | 109.1      | O3—C10—H10C   | 109.5      |
| С4—С7—Н7В    | 109.1      | H10A—C10—H10C | 109.5      |
| С8—С7—Н7В    | 109.1      | H10B-C10-H10C | 109.5      |
| H7A—C7—H7B   | 107.8      |               |            |
| C10—O3—C9—O4 | -0.3 (4)   | C1—C2—C3—C4   | -1.1 (5)   |
| C10—O3—C9—C8 | 176.6 (3)  | C5—C4—C3—C2   | 0.9 (5)    |
| O4—C9—C8—N2  | -29.2 (4)  | C7—C4—C3—C2   | -179.7 (3) |
| O3—C9—C8—N2  | 153.9 (2)  | C3—C4—C5—C6   | -0.4 (5)   |
| O4—C9—C8—C7  | 91.4 (3)   | C7—C4—C5—C6   | -179.9 (3) |
| O3—C9—C8—C7  | -85.5 (3)  | C2—C1—C6—C5   | -0.4 (6)   |
| C5—C4—C7—C8  | -103.2 (4) | N1-C1-C6-C5   | -180.0 (3) |
| C3—C4—C7—C8  | 77.3 (4)   | C4—C5—C6—C1   | 0.2 (5)    |
| N2—C8—C7—C4  | -172.3 (2) | C2—C1—N1—O2   | 176.2 (4)  |
| C9—C8—C7—C4  | 67.8 (3)   | C6—C1—N1—O2   | -4.2 (5)   |
| C6—C1—C2—C3  | 0.8 (6)    | C2-C1-N1-O1   | -2.3 (5)   |
| N1—C1—C2—C3  | -179.6 (3) | C6—C1—N1—O1   | 177.3 (4)  |

# Hydrogen-bond geometry (Å, °)

| D—H···A                                                                  | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D\!\!-\!\!\mathrm{H}^{\ldots}\!A$ |
|--------------------------------------------------------------------------|-------------|--------------|--------------|------------------------------------|
| N2—H11B····O4 <sup>i</sup>                                               | 0.89        | 2.31         | 2.929 (4)    | 127                                |
| N2—H11B…Cl1 <sup>i</sup>                                                 | 0.89        | 2.71         | 3.380 (3)    | 133                                |
| N2—H11C…Cl1 <sup>ii</sup>                                                | 0.89        | 2.42         | 3.175 (3)    | 143                                |
| N2—H11A…Cl1                                                              | 0.89        | 2.34         | 3.151 (3)    | 151                                |
| Symmetry codes: (i) $-x+1$ , $y-1/2$ , $-z+1$ ; (ii) $x-1$ , $y$ , $z$ . |             |              |              |                                    |







